集合和数据结构

迭代

序列迭代由 iterate 实现 广义的 for 循环

for i in iter   # or  "for i = iter"
    # body
end

被转换成

next = iterate(iter)
while next !== nothing
    (i, state) = next
    # body
    next = iterate(iter, state)
end

state 对象可以是任何对象,并且对于每个可迭代类型应该选择合适的 state 对象。 请参照 帮助文档接口的迭代小节 来获取关于定义一个常见迭代类型的更多细节。

Base.iterateFunction
iterate(iter [, state]) -> Union{Nothing, Tuple{Any, Any}}

Advance the iterator to obtain the next element. If no elements remain, nothing should be returned. Otherwise, a 2-tuple of the next element and the new iteration state should be returned.

source
Base.IteratorSizeType
IteratorSize(itertype::Type) -> IteratorSize

Given the type of an iterator, return one of the following values:

  • SizeUnknown() if the length (number of elements) cannot be determined in advance.
  • HasLength() if there is a fixed, finite length.
  • HasShape{N}() if there is a known length plus a notion of multidimensional shape (as for an array). In this case N should give the number of dimensions, and the axes function is valid for the iterator.
  • IsInfinite() if the iterator yields values forever.

The default value (for iterators that do not define this function) is HasLength(). This means that most iterators are assumed to implement length.

This trait is generally used to select between algorithms that pre-allocate space for their result, and algorithms that resize their result incrementally.

julia> Base.IteratorSize(1:5)
Base.HasShape{1}()

julia> Base.IteratorSize((2,3))
Base.HasLength()
source
Base.IteratorEltypeType
IteratorEltype(itertype::Type) -> IteratorEltype

Given the type of an iterator, return one of the following values:

  • EltypeUnknown() if the type of elements yielded by the iterator is not known in advance.
  • HasEltype() if the element type is known, and eltype would return a meaningful value.

HasEltype() is the default, since iterators are assumed to implement eltype.

This trait is generally used to select between algorithms that pre-allocate a specific type of result, and algorithms that pick a result type based on the types of yielded values.

julia> Base.IteratorEltype(1:5)
Base.HasEltype()
source

以下类型均完全实现了上述函数:

构造函数和类型

Base.OrdinalRangeType
OrdinalRange{T, S} <: AbstractRange{T}

Supertype for ordinal ranges with elements of type T with spacing(s) of type S. The steps should be always-exact multiples of oneunit, and T should be a "discrete" type, which cannot have values smaller than oneunit. For example, Integer or Date types would qualify, whereas Float64 would not (since this type can represent values smaller than oneunit(Float64). UnitRange, StepRange, and other types are subtypes of this.

source
Base.StepRangeType
StepRange{T, S} <: OrdinalRange{T, S}

Ranges with elements of type T with spacing of type S. The step between each element is constant, and the range is defined in terms of a start and stop of type T and a step of type S. Neither T nor S should be floating point types. The syntax a:b:c with b != 0 and a, b, and c all integers creates a StepRange.

Examples

julia> collect(StepRange(1, Int8(2), 10))
5-element Vector{Int64}:
 1
 3
 5
 7
 9

julia> typeof(StepRange(1, Int8(2), 10))
StepRange{Int64, Int8}

julia> typeof(1:3:6)
StepRange{Int64, Int64}
source
Base.UnitRangeType
UnitRange{T<:Real}

A range parameterized by a start and stop of type T, filled with elements spaced by 1 from start until stop is exceeded. The syntax a:b with a and b both Integers creates a UnitRange.

Examples

julia> collect(UnitRange(2.3, 5.2))
3-element Vector{Float64}:
 2.3
 3.3
 4.3

julia> typeof(1:10)
UnitRange{Int64}
source
Base.LinRangeType
LinRange{T,L}

A range with len linearly spaced elements between its start and stop. The size of the spacing is controlled by len, which must be an Integer.

Examples

julia> LinRange(1.5, 5.5, 9)
9-element LinRange{Float64, Int64}:
 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5

Compared to using range, directly constructing a LinRange should have less overhead but won't try to correct for floating point errors:

julia> collect(range(-0.1, 0.3, length=5))
5-element Vector{Float64}:
 -0.1
  0.0
  0.1
  0.2
  0.3

julia> collect(LinRange(-0.1, 0.3, 5))
5-element Vector{Float64}:
 -0.1
 -1.3877787807814457e-17
  0.09999999999999999
  0.19999999999999998
  0.3
source

通用集合

Base.isemptyFunction
isempty(collection) -> Bool

Determine whether a collection is empty (has no elements).

Warning

isempty(itr) may consume the next element of a stateful iterator itr unless an appropriate Base.isdone(itr) or isempty method is defined. Use of isempty should therefore be avoided when writing generic code which should support any iterator type.

Examples

julia> isempty([])
true

julia> isempty([1 2 3])
false
source
isempty(condition)

Return true if no tasks are waiting on the condition, false otherwise.

source
Base.empty!Function
empty!(collection) -> collection

Remove all elements from a collection.

Examples

julia> A = Dict("a" => 1, "b" => 2)
Dict{String, Int64} with 2 entries:
  "b" => 2
  "a" => 1

julia> empty!(A);

julia> A
Dict{String, Int64}()
source
Base.lengthFunction
length(collection) -> Integer

Return the number of elements in the collection.

Use lastindex to get the last valid index of an indexable collection.

See also: size, ndims, eachindex.

Examples

julia> length(1:5)
5

julia> length([1, 2, 3, 4])
4

julia> length([1 2; 3 4])
4
source
Base.checked_lengthFunction
Base.checked_length(r)

Calculates length(r), but may check for overflow errors where applicable when the result doesn't fit into Union{Integer(eltype(r)),Int}.

source

以下类型均完全实现了上述函数:

可迭代集合

Base.inFunction
in(item, collection) -> Bool
∈(item, collection) -> Bool

Determine whether an item is in the given collection, in the sense that it is == to one of the values generated by iterating over the collection. Return a Bool value, except if item is missing or collection contains missing but not item, in which case missing is returned (three-valued logic, matching the behavior of any and ==).

Some collections follow a slightly different definition. For example, Sets check whether the item isequal to one of the elements; Dicts look for key=>value pairs, and the key is compared using isequal.

To test for the presence of a key in a dictionary, use haskey or k in keys(dict). For the collections mentioned above, the result is always a Bool.

When broadcasting with in.(items, collection) or items .∈ collection, both item and collection are broadcasted over, which is often not what is intended. For example, if both arguments are vectors (and the dimensions match), the result is a vector indicating whether each value in collection items is in the value at the corresponding position in collection. To get a vector indicating whether each value in items is in collection, wrap collection in a tuple or a Ref like this: in.(items, Ref(collection)) or items .∈ Ref(collection).

See also: , insorted, contains, occursin, issubset.

Examples

julia> a = 1:3:20
1:3:19

julia> 4 in a
true

julia> 5 in a
false

julia> missing in [1, 2]
missing

julia> 1 in [2, missing]
missing

julia> 1 in [1, missing]
true

julia> missing in Set([1, 2])
false

julia> (1=>missing) in Dict(1=>10, 2=>20)
missing

julia> [1, 2] .∈ [2, 3]
2-element BitVector:
 0
 0

julia> [1, 2] .∈ ([2, 3],)
2-element BitVector:
 0
 1
source
Base.:∉Function
∉(item, collection) -> Bool
∌(collection, item) -> Bool

Negation of and , i.e. checks that item is not in collection.

When broadcasting with items .∉ collection, both item and collection are broadcasted over, which is often not what is intended. For example, if both arguments are vectors (and the dimensions match), the result is a vector indicating whether each value in collection items is not in the value at the corresponding position in collection. To get a vector indicating whether each value in items is not in collection, wrap collection in a tuple or a Ref like this: items .∉ Ref(collection).

Examples

julia> 1 ∉ 2:4
true

julia> 1 ∉ 1:3
false

julia> [1, 2] .∉ [2, 3]
2-element BitVector:
 1
 1

julia> [1, 2] .∉ ([2, 3],)
2-element BitVector:
 1
 0
source
Base.eltypeFunction
eltype(type)

Determine the type of the elements generated by iterating a collection of the given type. For dictionary types, this will be a Pair{KeyType,ValType}. The definition eltype(x) = eltype(typeof(x)) is provided for convenience so that instances can be passed instead of types. However the form that accepts a type argument should be defined for new types.

See also: keytype, typeof.

Examples

julia> eltype(fill(1f0, (2,2)))
Float32

julia> eltype(fill(0x1, (2,2)))
UInt8
source
Base.indexinFunction
indexin(a, b)

Return an array containing the first index in b for each value in a that is a member of b. The output array contains nothing wherever a is not a member of b.

See also: sortperm, findfirst.

Examples

julia> a = ['a', 'b', 'c', 'b', 'd', 'a'];

julia> b = ['a', 'b', 'c'];

julia> indexin(a, b)
6-element Vector{Union{Nothing, Int64}}:
 1
 2
 3
 2
  nothing
 1

julia> indexin(b, a)
3-element Vector{Union{Nothing, Int64}}:
 1
 2
 3
source
Base.uniqueFunction
unique(itr)

Return an array containing only the unique elements of collection itr, as determined by isequal, in the order that the first of each set of equivalent elements originally appears. The element type of the input is preserved.

See also: unique!, allunique, allequal.

Examples

julia> unique([1, 2, 6, 2])
3-element Vector{Int64}:
 1
 2
 6

julia> unique(Real[1, 1.0, 2])
2-element Vector{Real}:
 1
 2
source
unique(f, itr)

Return an array containing one value from itr for each unique value produced by f applied to elements of itr.

Examples

julia> unique(x -> x^2, [1, -1, 3, -3, 4])
3-element Vector{Int64}:
 1
 3
 4

This functionality can also be used to extract the indices of the first occurrences of unique elements in an array:

julia> a = [3.1, 4.2, 5.3, 3.1, 3.1, 3.1, 4.2, 1.7];

julia> i = unique(i -> a[i], eachindex(a))
4-element Vector{Int64}:
 1
 2
 3
 8

julia> a[i]
4-element Vector{Float64}:
 3.1
 4.2
 5.3
 1.7

julia> a[i] == unique(a)
true
source
unique(A::AbstractArray; dims::Int)

Return unique regions of A along dimension dims.

Examples

julia> A = map(isodd, reshape(Vector(1:8), (2,2,2)))
2×2×2 Array{Bool, 3}:
[:, :, 1] =
 1  1
 0  0

[:, :, 2] =
 1  1
 0  0

julia> unique(A)
2-element Vector{Bool}:
 1
 0

julia> unique(A, dims=2)
2×1×2 Array{Bool, 3}:
[:, :, 1] =
 1
 0

[:, :, 2] =
 1
 0

julia> unique(A, dims=3)
2×2×1 Array{Bool, 3}:
[:, :, 1] =
 1  1
 0  0
source
Base.unique!Function
unique!(f, A::AbstractVector)

Selects one value from A for each unique value produced by f applied to elements of A, then return the modified A.

Julia 1.1

This method is available as of Julia 1.1.

Examples

julia> unique!(x -> x^2, [1, -1, 3, -3, 4])
3-element Vector{Int64}:
 1
 3
 4

julia> unique!(n -> n%3, [5, 1, 8, 9, 3, 4, 10, 7, 2, 6])
3-element Vector{Int64}:
 5
 1
 9

julia> unique!(iseven, [2, 3, 5, 7, 9])
2-element Vector{Int64}:
 2
 3
source
unique!(A::AbstractVector)

Remove duplicate items as determined by isequal, then return the modified A. unique! will return the elements of A in the order that they occur. If you do not care about the order of the returned data, then calling (sort!(A); unique!(A)) will be much more efficient as long as the elements of A can be sorted.

Examples

julia> unique!([1, 1, 1])
1-element Vector{Int64}:
 1

julia> A = [7, 3, 2, 3, 7, 5];

julia> unique!(A)
4-element Vector{Int64}:
 7
 3
 2
 5

julia> B = [7, 6, 42, 6, 7, 42];

julia> sort!(B);  # unique! is able to process sorted data much more efficiently.

julia> unique!(B)
3-element Vector{Int64}:
  6
  7
 42
source
Base.alluniqueFunction
allunique(itr) -> Bool

Return true if all values from itr are distinct when compared with isequal.

See also: unique, issorted, allequal.

Examples

julia> allunique([1, 2, 3])
true

julia> allunique([1, 2, 1, 2])
false

julia> allunique(Real[1, 1.0, 2])
false

julia> allunique([NaN, 2.0, NaN, 4.0])
false
source
Base.allequalFunction
allequal(itr) -> Bool

Return true if all values from itr are equal when compared with isequal.

See also: unique, allunique.

Julia 1.8

The allequal function requires at least Julia 1.8.

Examples

julia> allequal([])
true

julia> allequal([1])
true

julia> allequal([1, 1])
true

julia> allequal([1, 2])
false

julia> allequal(Dict(:a => 1, :b => 1))
false
source
Base.reduceMethod
reduce(op, itr; [init])

Reduce the given collection itr with the given binary operator op. If provided, the initial value init must be a neutral element for op that will be returned for empty collections. It is unspecified whether init is used for non-empty collections.

For empty collections, providing init will be necessary, except for some special cases (e.g. when op is one of +, *, max, min, &, |) when Julia can determine the neutral element of op.

Reductions for certain commonly-used operators may have special implementations, and should be used instead: maximum(itr), minimum(itr), sum(itr), prod(itr), any(itr), all(itr). There are efficient methods for concatenating certain arrays of arrays by calling reduce(vcat, arr) or reduce(hcat, arr).

The associativity of the reduction is implementation dependent. This means that you can't use non-associative operations like - because it is undefined whether reduce(-,[1,2,3]) should be evaluated as (1-2)-3 or 1-(2-3). Use foldl or foldr instead for guaranteed left or right associativity.

Some operations accumulate error. Parallelism will be easier if the reduction can be executed in groups. Future versions of Julia might change the algorithm. Note that the elements are not reordered if you use an ordered collection.

Examples

julia> reduce(*, [2; 3; 4])
24

julia> reduce(*, [2; 3; 4]; init=-1)
-24
source
Base.reduceMethod
reduce(f, A::AbstractArray; dims=:, [init])

Reduce 2-argument function f along dimensions of A. dims is a vector specifying the dimensions to reduce, and the keyword argument init is the initial value to use in the reductions. For +, *, max and min the init argument is optional.

The associativity of the reduction is implementation-dependent; if you need a particular associativity, e.g. left-to-right, you should write your own loop or consider using foldl or foldr. See documentation for reduce.

Examples

julia> a = reshape(Vector(1:16), (4,4))
4×4 Matrix{Int64}:
 1  5   9  13
 2  6  10  14
 3  7  11  15
 4  8  12  16

julia> reduce(max, a, dims=2)
4×1 Matrix{Int64}:
 13
 14
 15
 16

julia> reduce(max, a, dims=1)
1×4 Matrix{Int64}:
 4  8  12  16
source
Base.foldlMethod
foldl(op, itr; [init])

Like reduce, but with guaranteed left associativity. If provided, the keyword argument init will be used exactly once. In general, it will be necessary to provide init to work with empty collections.

See also mapfoldl, foldr, accumulate.

Examples

julia> foldl(=>, 1:4)
((1 => 2) => 3) => 4

julia> foldl(=>, 1:4; init=0)
(((0 => 1) => 2) => 3) => 4

julia> accumulate(=>, (1,2,3,4))
(1, 1 => 2, (1 => 2) => 3, ((1 => 2) => 3) => 4)
source
Base.foldrMethod
foldr(op, itr; [init])

Like reduce, but with guaranteed right associativity. If provided, the keyword argument init will be used exactly once. In general, it will be necessary to provide init to work with empty collections.

Examples

julia> foldr(=>, 1:4)
1 => (2 => (3 => 4))

julia> foldr(=>, 1:4; init=0)
1 => (2 => (3 => (4 => 0)))
source
Base.maximumFunction
maximum(f, itr; [init])

Return the largest result of calling function f on each element of itr.

The value returned for empty itr can be specified by init. It must be a neutral element for max (i.e. which is less than or equal to any other element) as it is unspecified whether init is used for non-empty collections.

Julia 1.6

Keyword argument init requires Julia 1.6 or later.

Examples

julia> maximum(length, ["Julion", "Julia", "Jule"])
6

julia> maximum(length, []; init=-1)
-1

julia> maximum(sin, Real[]; init=-1.0)  # good, since output of sin is >= -1
-1.0
source
maximum(itr; [init])

Return the largest element in a collection.

The value returned for empty itr can be specified by init. It must be a neutral element for max (i.e. which is less than or equal to any other element) as it is unspecified whether init is used for non-empty collections.

Julia 1.6

Keyword argument init requires Julia 1.6 or later.

Examples

julia> maximum(-20.5:10)
9.5

julia> maximum([1,2,3])
3

julia> maximum(())
ERROR: MethodError: reducing over an empty collection is not allowed; consider supplying `init` to the reducer
Stacktrace:
[...]

julia> maximum((); init=-Inf)
-Inf
source
maximum(A::AbstractArray; dims)

Compute the maximum value of an array over the given dimensions. See also the max(a,b) function to take the maximum of two or more arguments, which can be applied elementwise to arrays via max.(a,b).

See also: maximum!, extrema, findmax, argmax.

Examples

julia> A = [1 2; 3 4]
2×2 Matrix{Int64}:
 1  2
 3  4

julia> maximum(A, dims=1)
1×2 Matrix{Int64}:
 3  4

julia> maximum(A, dims=2)
2×1 Matrix{Int64}:
 2
 4
source
maximum(f, A::AbstractArray; dims)

Compute the maximum value by calling the function f on each element of an array over the given dimensions.

Examples

julia> A = [1 2; 3 4]
2×2 Matrix{Int64}:
 1  2
 3  4

julia> maximum(abs2, A, dims=1)
1×2 Matrix{Int64}:
 9  16

julia> maximum(abs2, A, dims=2)
2×1 Matrix{Int64}:
  4
 16
source
Base.maximum!Function
maximum!(r, A)

Compute the maximum value of A over the singleton dimensions of r, and write results to r.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other argument.

Examples

julia> A = [1 2; 3 4]
2×2 Matrix{Int64}:
 1  2
 3  4

julia> maximum!([1; 1], A)
2-element Vector{Int64}:
 2
 4

julia> maximum!([1 1], A)
1×2 Matrix{Int64}:
 3  4
source
Base.minimumFunction
minimum(f, itr; [init])

Return the smallest result of calling function f on each element of itr.

The value returned for empty itr can be specified by init. It must be a neutral element for min (i.e. which is greater than or equal to any other element) as it is unspecified whether init is used for non-empty collections.

Julia 1.6

Keyword argument init requires Julia 1.6 or later.

Examples

julia> minimum(length, ["Julion", "Julia", "Jule"])
4

julia> minimum(length, []; init=typemax(Int64))
9223372036854775807

julia> minimum(sin, Real[]; init=1.0)  # good, since output of sin is <= 1
1.0
source
minimum(itr; [init])

Return the smallest element in a collection.

The value returned for empty itr can be specified by init. It must be a neutral element for min (i.e. which is greater than or equal to any other element) as it is unspecified whether init is used for non-empty collections.

Julia 1.6

Keyword argument init requires Julia 1.6 or later.

Examples

julia> minimum(-20.5:10)
-20.5

julia> minimum([1,2,3])
1

julia> minimum([])
ERROR: MethodError: reducing over an empty collection is not allowed; consider supplying `init` to the reducer
Stacktrace:
[...]

julia> minimum([]; init=Inf)
Inf
source
minimum(A::AbstractArray; dims)

Compute the minimum value of an array over the given dimensions. See also the min(a,b) function to take the minimum of two or more arguments, which can be applied elementwise to arrays via min.(a,b).

See also: minimum!, extrema, findmin, argmin.

Examples

julia> A = [1 2; 3 4]
2×2 Matrix{Int64}:
 1  2
 3  4

julia> minimum(A, dims=1)
1×2 Matrix{Int64}:
 1  2

julia> minimum(A, dims=2)
2×1 Matrix{Int64}:
 1
 3
source
minimum(f, A::AbstractArray; dims)

Compute the minimum value by calling the function f on each element of an array over the given dimensions.

Examples

julia> A = [1 2; 3 4]
2×2 Matrix{Int64}:
 1  2
 3  4

julia> minimum(abs2, A, dims=1)
1×2 Matrix{Int64}:
 1  4

julia> minimum(abs2, A, dims=2)
2×1 Matrix{Int64}:
 1
 9
source
Base.minimum!Function
minimum!(r, A)

Compute the minimum value of A over the singleton dimensions of r, and write results to r.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other argument.

Examples

julia> A = [1 2; 3 4]
2×2 Matrix{Int64}:
 1  2
 3  4

julia> minimum!([1; 1], A)
2-element Vector{Int64}:
 1
 3

julia> minimum!([1 1], A)
1×2 Matrix{Int64}:
 1  2
source
Base.extremaFunction
extrema(itr; [init]) -> (mn, mx)

Compute both the minimum mn and maximum mx element in a single pass, and return them as a 2-tuple.

The value returned for empty itr can be specified by init. It must be a 2-tuple whose first and second elements are neutral elements for min and max respectively (i.e. which are greater/less than or equal to any other element). As a consequence, when itr is empty the returned (mn, mx) tuple will satisfy mn ≥ mx. When init is specified it may be used even for non-empty itr.

Julia 1.8

Keyword argument init requires Julia 1.8 or later.

Examples

julia> extrema(2:10)
(2, 10)

julia> extrema([9,pi,4.5])
(3.141592653589793, 9.0)

julia> extrema([]; init = (Inf, -Inf))
(Inf, -Inf)
source
extrema(f, itr; [init]) -> (mn, mx)

Compute both the minimum mn and maximum mx of f applied to each element in itr and return them as a 2-tuple. Only one pass is made over itr.

The value returned for empty itr can be specified by init. It must be a 2-tuple whose first and second elements are neutral elements for min and max respectively (i.e. which are greater/less than or equal to any other element). It is used for non-empty collections. Note: it implies that, for empty itr, the returned value (mn, mx) satisfies mn ≥ mx even though for non-empty itr it satisfies mn ≤ mx. This is a "paradoxical" but yet expected result.

Julia 1.2

This method requires Julia 1.2 or later.

Julia 1.8

Keyword argument init requires Julia 1.8 or later.

Examples

julia> extrema(sin, 0:π)
(0.0, 0.9092974268256817)

julia> extrema(sin, Real[]; init = (1.0, -1.0))  # good, since -1 ≤ sin(::Real) ≤ 1
(1.0, -1.0)
source
extrema(A::AbstractArray; dims) -> Array{Tuple}

Compute the minimum and maximum elements of an array over the given dimensions.

See also: minimum, maximum, extrema!.

Examples

julia> A = reshape(Vector(1:2:16), (2,2,2))
2×2×2 Array{Int64, 3}:
[:, :, 1] =
 1  5
 3  7

[:, :, 2] =
  9  13
 11  15

julia> extrema(A, dims = (1,2))
1×1×2 Array{Tuple{Int64, Int64}, 3}:
[:, :, 1] =
 (1, 7)

[:, :, 2] =
 (9, 15)
source
extrema(f, A::AbstractArray; dims) -> Array{Tuple}

Compute the minimum and maximum of f applied to each element in the given dimensions of A.

Julia 1.2

This method requires Julia 1.2 or later.

source
Base.extrema!Function
extrema!(r, A)

Compute the minimum and maximum value of A over the singleton dimensions of r, and write results to r.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other argument.

Julia 1.8

This method requires Julia 1.8 or later.

Examples

julia> A = [1 2; 3 4]
2×2 Matrix{Int64}:
 1  2
 3  4

julia> extrema!([(1, 1); (1, 1)], A)
2-element Vector{Tuple{Int64, Int64}}:
 (1, 2)
 (3, 4)

julia> extrema!([(1, 1);; (1, 1)], A)
1×2 Matrix{Tuple{Int64, Int64}}:
 (1, 3)  (2, 4)
source
Base.argmaxFunction
argmax(r::AbstractRange)

Ranges can have multiple maximal elements. In that case argmax will return a maximal index, but not necessarily the first one.

source
argmax(f, domain)

Return a value x from domain for which f(x) is maximised. If there are multiple maximal values for f(x) then the first one will be found.

domain must be a non-empty iterable.

Values are compared with isless.

Julia 1.7

This method requires Julia 1.7 or later.

See also argmin, findmax.

Examples

julia> argmax(abs, -10:5)
-10

julia> argmax(cos, 0:π/2:2π)
0.0
source
argmax(itr)

Return the index or key of the maximal element in a collection. If there are multiple maximal elements, then the first one will be returned.

The collection must not be empty.

Values are compared with isless.

See also: argmin, findmax.

Examples

julia> argmax([8, 0.1, -9, pi])
1

julia> argmax([1, 7, 7, 6])
2

julia> argmax([1, 7, 7, NaN])
4
source
argmax(A; dims) -> indices

For an array input, return the indices of the maximum elements over the given dimensions. NaN is treated as greater than all other values except missing.

Examples

julia> A = [1.0 2; 3 4]
2×2 Matrix{Float64}:
 1.0  2.0
 3.0  4.0

julia> argmax(A, dims=1)
1×2 Matrix{CartesianIndex{2}}:
 CartesianIndex(2, 1)  CartesianIndex(2, 2)

julia> argmax(A, dims=2)
2×1 Matrix{CartesianIndex{2}}:
 CartesianIndex(1, 2)
 CartesianIndex(2, 2)
source
Base.argminFunction
argmin(r::AbstractRange)

Ranges can have multiple minimal elements. In that case argmin will return a minimal index, but not necessarily the first one.

source
argmin(f, domain)

Return a value x from domain for which f(x) is minimised. If there are multiple minimal values for f(x) then the first one will be found.

domain must be a non-empty iterable.

NaN is treated as less than all other values except missing.

Julia 1.7

This method requires Julia 1.7 or later.

See also argmax, findmin.

Examples

julia> argmin(sign, -10:5)
-10

julia> argmin(x -> -x^3 + x^2 - 10, -5:5)
5

julia> argmin(acos, 0:0.1:1)
1.0
source
argmin(itr)

Return the index or key of the minimal element in a collection. If there are multiple minimal elements, then the first one will be returned.

The collection must not be empty.

NaN is treated as less than all other values except missing.

See also: argmax, findmin.

Examples

julia> argmin([8, 0.1, -9, pi])
3

julia> argmin([7, 1, 1, 6])
2

julia> argmin([7, 1, 1, NaN])
4
source
argmin(A; dims) -> indices

For an array input, return the indices of the minimum elements over the given dimensions. NaN is treated as less than all other values except missing.

Examples

julia> A = [1.0 2; 3 4]
2×2 Matrix{Float64}:
 1.0  2.0
 3.0  4.0

julia> argmin(A, dims=1)
1×2 Matrix{CartesianIndex{2}}:
 CartesianIndex(1, 1)  CartesianIndex(1, 2)

julia> argmin(A, dims=2)
2×1 Matrix{CartesianIndex{2}}:
 CartesianIndex(1, 1)
 CartesianIndex(2, 1)
source
Base.findmaxFunction
findmax(f, domain) -> (f(x), index)

Return a pair of a value in the codomain (outputs of f) and the index of the corresponding value in the domain (inputs to f) such that f(x) is maximised. If there are multiple maximal points, then the first one will be returned.

domain must be a non-empty iterable.

Values are compared with isless.

Julia 1.7

This method requires Julia 1.7 or later.

Examples

julia> findmax(identity, 5:9)
(9, 5)

julia> findmax(-, 1:10)
(-1, 1)

julia> findmax(first, [(1, :a), (3, :b), (3, :c)])
(3, 2)

julia> findmax(cos, 0:π/2:2π)
(1.0, 1)
source
findmax(itr) -> (x, index)

Return the maximal element of the collection itr and its index or key. If there are multiple maximal elements, then the first one will be returned. Values are compared with isless.

See also: findmin, argmax, maximum.

Examples

julia> findmax([8, 0.1, -9, pi])
(8.0, 1)

julia> findmax([1, 7, 7, 6])
(7, 2)

julia> findmax([1, 7, 7, NaN])
(NaN, 4)
source
findmax(A; dims) -> (maxval, index)

For an array input, returns the value and index of the maximum over the given dimensions. NaN is treated as greater than all other values except missing.

Examples

julia> A = [1.0 2; 3 4]
2×2 Matrix{Float64}:
 1.0  2.0
 3.0  4.0

julia> findmax(A, dims=1)
([3.0 4.0], CartesianIndex{2}[CartesianIndex(2, 1) CartesianIndex(2, 2)])

julia> findmax(A, dims=2)
([2.0; 4.0;;], CartesianIndex{2}[CartesianIndex(1, 2); CartesianIndex(2, 2);;])
source
findmax(f, A; dims) -> (f(x), index)

For an array input, returns the value in the codomain and index of the corresponding value which maximize f over the given dimensions.

Examples

julia> A = [-1.0 1; -0.5 2]
2×2 Matrix{Float64}:
 -1.0  1.0
 -0.5  2.0

julia> findmax(abs2, A, dims=1)
([1.0 4.0], CartesianIndex{2}[CartesianIndex(1, 1) CartesianIndex(2, 2)])

julia> findmax(abs2, A, dims=2)
([1.0; 4.0;;], CartesianIndex{2}[CartesianIndex(1, 1); CartesianIndex(2, 2);;])
source
Base.findminFunction
findmin(f, domain) -> (f(x), index)

Return a pair of a value in the codomain (outputs of f) and the index of the corresponding value in the domain (inputs to f) such that f(x) is minimised. If there are multiple minimal points, then the first one will be returned.

domain must be a non-empty iterable.

NaN is treated as less than all other values except missing.

Julia 1.7

This method requires Julia 1.7 or later.

Examples

julia> findmin(identity, 5:9)
(5, 1)

julia> findmin(-, 1:10)
(-10, 10)

julia> findmin(first, [(2, :a), (2, :b), (3, :c)])
(2, 1)

julia> findmin(cos, 0:π/2:2π)
(-1.0, 3)
source
findmin(itr) -> (x, index)

Return the minimal element of the collection itr and its index or key. If there are multiple minimal elements, then the first one will be returned. NaN is treated as less than all other values except missing.

See also: findmax, argmin, minimum.

Examples

julia> findmin([8, 0.1, -9, pi])
(-9.0, 3)

julia> findmin([1, 7, 7, 6])
(1, 1)

julia> findmin([1, 7, 7, NaN])
(NaN, 4)
source
findmin(A; dims) -> (minval, index)

For an array input, returns the value and index of the minimum over the given dimensions. NaN is treated as less than all other values except missing.

Examples

julia> A = [1.0 2; 3 4]
2×2 Matrix{Float64}:
 1.0  2.0
 3.0  4.0

julia> findmin(A, dims=1)
([1.0 2.0], CartesianIndex{2}[CartesianIndex(1, 1) CartesianIndex(1, 2)])

julia> findmin(A, dims=2)
([1.0; 3.0;;], CartesianIndex{2}[CartesianIndex(1, 1); CartesianIndex(2, 1);;])
source
findmin(f, A; dims) -> (f(x), index)

For an array input, returns the value in the codomain and index of the corresponding value which minimize f over the given dimensions.

Examples

julia> A = [-1.0 1; -0.5 2]
2×2 Matrix{Float64}:
 -1.0  1.0
 -0.5  2.0

julia> findmin(abs2, A, dims=1)
([0.25 1.0], CartesianIndex{2}[CartesianIndex(2, 1) CartesianIndex(1, 2)])

julia> findmin(abs2, A, dims=2)
([1.0; 0.25;;], CartesianIndex{2}[CartesianIndex(1, 1); CartesianIndex(2, 1);;])
source
Base.findmax!Function
findmax!(rval, rind, A) -> (maxval, index)

Find the maximum of A and the corresponding linear index along singleton dimensions of rval and rind, and store the results in rval and rind. NaN is treated as greater than all other values except missing.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other argument.

source
Base.findmin!Function
findmin!(rval, rind, A) -> (minval, index)

Find the minimum of A and the corresponding linear index along singleton dimensions of rval and rind, and store the results in rval and rind. NaN is treated as less than all other values except missing.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other argument.

source
Base.sumFunction
sum(f, itr; [init])

Sum the results of calling function f on each element of itr.

The return type is Int for signed integers of less than system word size, and UInt for unsigned integers of less than system word size. For all other arguments, a common return type is found to which all arguments are promoted.

The value returned for empty itr can be specified by init. It must be the additive identity (i.e. zero) as it is unspecified whether init is used for non-empty collections.

Julia 1.6

Keyword argument init requires Julia 1.6 or later.

Examples

julia> sum(abs2, [2; 3; 4])
29

Note the important difference between sum(A) and reduce(+, A) for arrays with small integer eltype:

julia> sum(Int8[100, 28])
128

julia> reduce(+, Int8[100, 28])
-128

In the former case, the integers are widened to system word size and therefore the result is 128. In the latter case, no such widening happens and integer overflow results in -128.

source
sum(itr; [init])

Return the sum of all elements in a collection.

The return type is Int for signed integers of less than system word size, and UInt for unsigned integers of less than system word size. For all other arguments, a common return type is found to which all arguments are promoted.

The value returned for empty itr can be specified by init. It must be the additive identity (i.e. zero) as it is unspecified whether init is used for non-empty collections.

Julia 1.6

Keyword argument init requires Julia 1.6 or later.

See also: reduce, mapreduce, count, union.

Examples

julia> sum(1:20)
210

julia> sum(1:20; init = 0.0)
210.0
source
sum(A::AbstractArray; dims)

Sum elements of an array over the given dimensions.

Examples

julia> A = [1 2; 3 4]
2×2 Matrix{Int64}:
 1  2
 3  4

julia> sum(A, dims=1)
1×2 Matrix{Int64}:
 4  6

julia> sum(A, dims=2)
2×1 Matrix{Int64}:
 3
 7
source
sum(f, A::AbstractArray; dims)

Sum the results of calling function f on each element of an array over the given dimensions.

Examples

julia> A = [1 2; 3 4]
2×2 Matrix{Int64}:
 1  2
 3  4

julia> sum(abs2, A, dims=1)
1×2 Matrix{Int64}:
 10  20

julia> sum(abs2, A, dims=2)
2×1 Matrix{Int64}:
  5
 25
source
Base.sum!Function
sum!(r, A)

Sum elements of A over the singleton dimensions of r, and write results to r.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other argument.

Examples

julia> A = [1 2; 3 4]
2×2 Matrix{Int64}:
 1  2
 3  4

julia> sum!([1; 1], A)
2-element Vector{Int64}:
 3
 7

julia> sum!([1 1], A)
1×2 Matrix{Int64}:
 4  6
source
Base.prodFunction
prod(f, itr; [init])

Return the product of f applied to each element of itr.

The return type is Int for signed integers of less than system word size, and UInt for unsigned integers of less than system word size. For all other arguments, a common return type is found to which all arguments are promoted.

The value returned for empty itr can be specified by init. It must be the multiplicative identity (i.e. one) as it is unspecified whether init is used for non-empty collections.

Julia 1.6

Keyword argument init requires Julia 1.6 or later.

Examples

julia> prod(abs2, [2; 3; 4])
576
source
prod(itr; [init])

Return the product of all elements of a collection.

The return type is Int for signed integers of less than system word size, and UInt for unsigned integers of less than system word size. For all other arguments, a common return type is found to which all arguments are promoted.

The value returned for empty itr can be specified by init. It must be the multiplicative identity (i.e. one) as it is unspecified whether init is used for non-empty collections.

Julia 1.6

Keyword argument init requires Julia 1.6 or later.

See also: reduce, cumprod, any.

Examples

julia> prod(1:5)
120

julia> prod(1:5; init = 1.0)
120.0
source
prod(A::AbstractArray; dims)

Multiply elements of an array over the given dimensions.

Examples

julia> A = [1 2; 3 4]
2×2 Matrix{Int64}:
 1  2
 3  4

julia> prod(A, dims=1)
1×2 Matrix{Int64}:
 3  8

julia> prod(A, dims=2)
2×1 Matrix{Int64}:
  2
 12
source
prod(f, A::AbstractArray; dims)

Multiply the results of calling the function f on each element of an array over the given dimensions.

Examples

julia> A = [1 2; 3 4]
2×2 Matrix{Int64}:
 1  2
 3  4

julia> prod(abs2, A, dims=1)
1×2 Matrix{Int64}:
 9  64

julia> prod(abs2, A, dims=2)
2×1 Matrix{Int64}:
   4
 144
source
Base.prod!Function
prod!(r, A)

Multiply elements of A over the singleton dimensions of r, and write results to r.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other argument.

Examples

julia> A = [1 2; 3 4]
2×2 Matrix{Int64}:
 1  2
 3  4

julia> prod!([1; 1], A)
2-element Vector{Int64}:
  2
 12

julia> prod!([1 1], A)
1×2 Matrix{Int64}:
 3  8
source
Base.anyMethod
any(itr) -> Bool

Test whether any elements of a boolean collection are true, returning true as soon as the first true value in itr is encountered (short-circuiting). To short-circuit on false, use all.

If the input contains missing values, return missing if all non-missing values are false (or equivalently, if the input contains no true value), following three-valued logic.

See also: all, count, sum, |, , ||.

Examples

julia> a = [true,false,false,true]
4-element Vector{Bool}:
 1
 0
 0
 1

julia> any(a)
true

julia> any((println(i); v) for (i, v) in enumerate(a))
1
true

julia> any([missing, true])
true

julia> any([false, missing])
missing
source
Base.anyMethod
any(p, itr) -> Bool

Determine whether predicate p returns true for any elements of itr, returning true as soon as the first item in itr for which p returns true is encountered (short-circuiting). To short-circuit on false, use all.

If the input contains missing values, return missing if all non-missing values are false (or equivalently, if the input contains no true value), following three-valued logic.

Examples

julia> any(i->(4<=i<=6), [3,5,7])
true

julia> any(i -> (println(i); i > 3), 1:10)
1
2
3
4
true

julia> any(i -> i > 0, [1, missing])
true

julia> any(i -> i > 0, [-1, missing])
missing

julia> any(i -> i > 0, [-1, 0])
false
source
Base.any!Function
any!(r, A)

Test whether any values in A along the singleton dimensions of r are true, and write results to r.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other argument.

Examples

julia> A = [true false; true false]
2×2 Matrix{Bool}:
 1  0
 1  0

julia> any!([1; 1], A)
2-element Vector{Int64}:
 1
 1

julia> any!([1 1], A)
1×2 Matrix{Int64}:
 1  0
source
Base.allMethod
all(itr) -> Bool

Test whether all elements of a boolean collection are true, returning false as soon as the first false value in itr is encountered (short-circuiting). To short-circuit on true, use any.

If the input contains missing values, return missing if all non-missing values are true (or equivalently, if the input contains no false value), following three-valued logic.

See also: all!, any, count, &, , &&, allunique.

Examples

julia> a = [true,false,false,true]
4-element Vector{Bool}:
 1
 0
 0
 1

julia> all(a)
false

julia> all((println(i); v) for (i, v) in enumerate(a))
1
2
false

julia> all([missing, false])
false

julia> all([true, missing])
missing
source
Base.allMethod
all(p, itr) -> Bool

Determine whether predicate p returns true for all elements of itr, returning false as soon as the first item in itr for which p returns false is encountered (short-circuiting). To short-circuit on true, use any.

If the input contains missing values, return missing if all non-missing values are true (or equivalently, if the input contains no false value), following three-valued logic.

Examples

julia> all(i->(4<=i<=6), [4,5,6])
true

julia> all(i -> (println(i); i < 3), 1:10)
1
2
3
false

julia> all(i -> i > 0, [1, missing])
missing

julia> all(i -> i > 0, [-1, missing])
false

julia> all(i -> i > 0, [1, 2])
true
source
Base.all!Function
all!(r, A)

Test whether all values in A along the singleton dimensions of r are true, and write results to r.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other argument.

Examples

julia> A = [true false; true false]
2×2 Matrix{Bool}:
 1  0
 1  0

julia> all!([1; 1], A)
2-element Vector{Int64}:
 0
 0

julia> all!([1 1], A)
1×2 Matrix{Int64}:
 1  0
source
Base.countFunction
count([f=identity,] itr; init=0) -> Integer

Count the number of elements in itr for which the function f returns true. If f is omitted, count the number of true elements in itr (which should be a collection of boolean values). init optionally specifies the value to start counting from and therefore also determines the output type.

Julia 1.6

init keyword was added in Julia 1.6.

See also: any, sum.

Examples

julia> count(i->(4<=i<=6), [2,3,4,5,6])
3

julia> count([true, false, true, true])
3

julia> count(>(3), 1:7, init=0x03)
0x07
source
count(
    pattern::Union{AbstractChar,AbstractString,AbstractPattern},
    string::AbstractString;
    overlap::Bool = false,
)

Return the number of matches for pattern in string. This is equivalent to calling length(findall(pattern, string)) but more efficient.

If overlap=true, the matching sequences are allowed to overlap indices in the original string, otherwise they must be from disjoint character ranges.

Julia 1.3

This method requires at least Julia 1.3.

Julia 1.7

Using a character as the pattern requires at least Julia 1.7.

Examples

julia> count('a', "JuliaLang")
2

julia> count(r"a(.)a", "cabacabac", overlap=true)
3

julia> count(r"a(.)a", "cabacabac")
2
source
count([f=identity,] A::AbstractArray; dims=:)

Count the number of elements in A for which f returns true over the given dimensions.

Julia 1.5

dims keyword was added in Julia 1.5.

Julia 1.6

init keyword was added in Julia 1.6.

Examples

julia> A = [1 2; 3 4]
2×2 Matrix{Int64}:
 1  2
 3  4

julia> count(<=(2), A, dims=1)
1×2 Matrix{Int64}:
 1  1

julia> count(<=(2), A, dims=2)
2×1 Matrix{Int64}:
 2
 0
source
Base.foreachFunction
foreach(f, c...) -> Nothing

Call function f on each element of iterable c. For multiple iterable arguments, f is called elementwise, and iteration stops when any iterator is finished.

foreach should be used instead of map when the results of f are not needed, for example in foreach(println, array).

Examples

julia> tri = 1:3:7; res = Int[];

julia> foreach(x -> push!(res, x^2), tri)

julia> res
3-element Vector{Int64}:
  1
 16
 49

julia> foreach((x, y) -> println(x, " with ", y), tri, 'a':'z')
1 with a
4 with b
7 with c
source
Base.mapFunction
map(f, c...) -> collection

Transform collection c by applying f to each element. For multiple collection arguments, apply f elementwise, and stop when any of them is exhausted.

See also map!, foreach, mapreduce, mapslices, zip, Iterators.map.

Examples

julia> map(x -> x * 2, [1, 2, 3])
3-element Vector{Int64}:
 2
 4
 6

julia> map(+, [1, 2, 3], [10, 20, 30, 400, 5000])
3-element Vector{Int64}:
 11
 22
 33
source
map(f, A::AbstractArray...) -> N-array

When acting on multi-dimensional arrays of the same ndims, they must all have the same axes, and the answer will too.

See also broadcast, which allows mismatched sizes.

Examples

julia> map(//, [1 2; 3 4], [4 3; 2 1])
2×2 Matrix{Rational{Int64}}:
 1//4  2//3
 3//2  4//1

julia> map(+, [1 2; 3 4], zeros(2,1))
ERROR: DimensionMismatch

julia> map(+, [1 2; 3 4], [1,10,100,1000], zeros(3,1))  # iterates until 3rd is exhausted
3-element Vector{Float64}:
   2.0
  13.0
 102.0
source
Base.map!Function
map!(function, destination, collection...)

Like map, but stores the result in destination rather than a new collection. destination must be at least as large as the smallest collection.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other argument.

See also: map, foreach, zip, copyto!.

Examples

julia> a = zeros(3);

julia> map!(x -> x * 2, a, [1, 2, 3]);

julia> a
3-element Vector{Float64}:
 2.0
 4.0
 6.0

julia> map!(+, zeros(Int, 5), 100:999, 1:3)
5-element Vector{Int64}:
 101
 103
 105
   0
   0
source
map!(f, values(dict::AbstractDict))

Modifies dict by transforming each value from val to f(val). Note that the type of dict cannot be changed: if f(val) is not an instance of the value type of dict then it will be converted to the value type if possible and otherwise raise an error.

Julia 1.2

map!(f, values(dict::AbstractDict)) requires Julia 1.2 or later.

Examples

julia> d = Dict(:a => 1, :b => 2)
Dict{Symbol, Int64} with 2 entries:
  :a => 1
  :b => 2

julia> map!(v -> v-1, values(d))
ValueIterator for a Dict{Symbol, Int64} with 2 entries. Values:
  0
  1
source
Base.mapreduceMethod
mapreduce(f, op, itrs...; [init])

Apply function f to each element(s) in itrs, and then reduce the result using the binary function op. If provided, init must be a neutral element for op that will be returned for empty collections. It is unspecified whether init is used for non-empty collections. In general, it will be necessary to provide init to work with empty collections.

mapreduce is functionally equivalent to calling reduce(op, map(f, itr); init=init), but will in general execute faster since no intermediate collection needs to be created. See documentation for reduce and map.

Julia 1.2

mapreduce with multiple iterators requires Julia 1.2 or later.

Examples

julia> mapreduce(x->x^2, +, [1:3;]) # == 1 + 4 + 9
14

The associativity of the reduction is implementation-dependent. Additionally, some implementations may reuse the return value of f for elements that appear multiple times in itr. Use mapfoldl or mapfoldr instead for guaranteed left or right associativity and invocation of f for every value.

source
Base.mapfoldlMethod
mapfoldl(f, op, itr; [init])

Like mapreduce, but with guaranteed left associativity, as in foldl. If provided, the keyword argument init will be used exactly once. In general, it will be necessary to provide init to work with empty collections.

source
Base.mapfoldrMethod
mapfoldr(f, op, itr; [init])

Like mapreduce, but with guaranteed right associativity, as in foldr. If provided, the keyword argument init will be used exactly once. In general, it will be necessary to provide init to work with empty collections.

source
Base.firstFunction
first(coll)

Get the first element of an iterable collection. Return the start point of an AbstractRange even if it is empty.

See also: only, firstindex, last.

Examples

julia> first(2:2:10)
2

julia> first([1; 2; 3; 4])
1
source
first(itr, n::Integer)

Get the first n elements of the iterable collection itr, or fewer elements if itr is not long enough.

See also: startswith, Iterators.take.

Julia 1.6

This method requires at least Julia 1.6.

Examples

julia> first(["foo", "bar", "qux"], 2)
2-element Vector{String}:
 "foo"
 "bar"

julia> first(1:6, 10)
1:6

julia> first(Bool[], 1)
Bool[]
source
first(s::AbstractString, n::Integer)

Get a string consisting of the first n characters of s.

Examples

julia> first("∀ϵ≠0: ϵ²>0", 0)
""

julia> first("∀ϵ≠0: ϵ²>0", 1)
"∀"

julia> first("∀ϵ≠0: ϵ²>0", 3)
"∀ϵ≠"
source
Base.lastFunction
last(coll)

Get the last element of an ordered collection, if it can be computed in O(1) time. This is accomplished by calling lastindex to get the last index. Return the end point of an AbstractRange even if it is empty.

See also first, endswith.

Examples

julia> last(1:2:10)
9

julia> last([1; 2; 3; 4])
4
source
last(itr, n::Integer)

Get the last n elements of the iterable collection itr, or fewer elements if itr is not long enough.

Julia 1.6

This method requires at least Julia 1.6.

Examples

julia> last(["foo", "bar", "qux"], 2)
2-element Vector{String}:
 "bar"
 "qux"

julia> last(1:6, 10)
1:6

julia> last(Float64[], 1)
Float64[]
source
last(s::AbstractString, n::Integer)

Get a string consisting of the last n characters of s.

Examples

julia> last("∀ϵ≠0: ϵ²>0", 0)
""

julia> last("∀ϵ≠0: ϵ²>0", 1)
"0"

julia> last("∀ϵ≠0: ϵ²>0", 3)
"²>0"
source
Base.frontFunction
front(x::Tuple)::Tuple

Return a Tuple consisting of all but the last component of x.

See also: first, tail.

Examples

julia> Base.front((1,2,3))
(1, 2)

julia> Base.front(())
ERROR: ArgumentError: Cannot call front on an empty tuple.
source
Base.tailFunction
tail(x::Tuple)::Tuple

Return a Tuple consisting of all but the first component of x.

See also: front, rest, first, Iterators.peel.

Examples

julia> Base.tail((1,2,3))
(2, 3)

julia> Base.tail(())
ERROR: ArgumentError: Cannot call tail on an empty tuple.
source
Base.stepFunction
step(r)

Get the step size of an AbstractRange object.

Examples

julia> step(1:10)
1

julia> step(1:2:10)
2

julia> step(2.5:0.3:10.9)
0.3

julia> step(range(2.5, stop=10.9, length=85))
0.1
source
Base.collectMethod
collect(collection)

Return an Array of all items in a collection or iterator. For dictionaries, returns Vector{Pair{KeyType, ValType}}. If the argument is array-like or is an iterator with the HasShape trait, the result will have the same shape and number of dimensions as the argument.

Used by comprehensions to turn a generator into an Array.

Examples

julia> collect(1:2:13)
7-element Vector{Int64}:
  1
  3
  5
  7
  9
 11
 13

julia> [x^2 for x in 1:8 if isodd(x)]
4-element Vector{Int64}:
  1
  9
 25
 49
source
Base.collectMethod
collect(element_type, collection)

Return an Array with the given element type of all items in a collection or iterable. The result has the same shape and number of dimensions as collection.

Examples

julia> collect(Float64, 1:2:5)
3-element Vector{Float64}:
 1.0
 3.0
 5.0
source
Base.filterFunction
filter(f, a)

Return a copy of collection a, removing elements for which f is false. The function f is passed one argument.

Julia 1.4

Support for a as a tuple requires at least Julia 1.4.

See also: filter!, Iterators.filter.

Examples

julia> a = 1:10
1:10

julia> filter(isodd, a)
5-element Vector{Int64}:
 1
 3
 5
 7
 9
source
filter(f)

Create a function that filters its arguments with function f using filter, i.e. a function equivalent to x -> filter(f, x).

The returned function is of type Base.Fix1{typeof(filter)}, which can be used to implement specialized methods.

Examples

julia> (1, 2, Inf, 4, NaN, 6) |> filter(isfinite)
(1, 2, 4, 6)

julia> map(filter(iseven), [1:3, 2:4, 3:5])
3-element Vector{Vector{Int64}}:
 [2]
 [2, 4]
 [4]
Julia 1.9

This method requires at least Julia 1.9.

source
filter(f, d::AbstractDict)

Return a copy of d, removing elements for which f is false. The function f is passed key=>value pairs.

Examples

julia> d = Dict(1=>"a", 2=>"b")
Dict{Int64, String} with 2 entries:
  2 => "b"
  1 => "a"

julia> filter(p->isodd(p.first), d)
Dict{Int64, String} with 1 entry:
  1 => "a"
source
filter(f, itr::SkipMissing{<:AbstractArray})

Return a vector similar to the array wrapped by the given SkipMissing iterator but with all missing elements and those for which f returns false removed.

Julia 1.2

This method requires Julia 1.2 or later.

Examples

julia> x = [1 2; missing 4]
2×2 Matrix{Union{Missing, Int64}}:
 1         2
  missing  4

julia> filter(isodd, skipmissing(x))
1-element Vector{Int64}:
 1
source
Base.filter!Function
filter!(f, a)

Update collection a, removing elements for which f is false. The function f is passed one argument.

Examples

julia> filter!(isodd, Vector(1:10))
5-element Vector{Int64}:
 1
 3
 5
 7
 9
source
filter!(f, d::AbstractDict)

Update d, removing elements for which f is false. The function f is passed key=>value pairs.

Example

julia> d = Dict(1=>"a", 2=>"b", 3=>"c")
Dict{Int64, String} with 3 entries:
  2 => "b"
  3 => "c"
  1 => "a"

julia> filter!(p->isodd(p.first), d)
Dict{Int64, String} with 2 entries:
  3 => "c"
  1 => "a"
source
Base.replaceMethod
replace(A, old_new::Pair...; [count::Integer])

Return a copy of collection A where, for each pair old=>new in old_new, all occurrences of old are replaced by new. Equality is determined using isequal. If count is specified, then replace at most count occurrences in total.

The element type of the result is chosen using promotion (see promote_type) based on the element type of A and on the types of the new values in pairs. If count is omitted and the element type of A is a Union, the element type of the result will not include singleton types which are replaced with values of a different type: for example, Union{T,Missing} will become T if missing is replaced.

See also replace!, splice!, delete!, insert!.

Julia 1.7

Version 1.7 is required to replace elements of a Tuple.

Examples

julia> replace([1, 2, 1, 3], 1=>0, 2=>4, count=2)
4-element Vector{Int64}:
 0
 4
 1
 3

julia> replace([1, missing], missing=>0)
2-element Vector{Int64}:
 1
 0
source
Base.replaceMethod
replace(new::Union{Function, Type}, A; [count::Integer])

Return a copy of A where each value x in A is replaced by new(x). If count is specified, then replace at most count values in total (replacements being defined as new(x) !== x).

Julia 1.7

Version 1.7 is required to replace elements of a Tuple.

Examples

julia> replace(x -> isodd(x) ? 2x : x, [1, 2, 3, 4])
4-element Vector{Int64}:
 2
 2
 6
 4

julia> replace(Dict(1=>2, 3=>4)) do kv
           first(kv) < 3 ? first(kv)=>3 : kv
       end
Dict{Int64, Int64} with 2 entries:
  3 => 4
  1 => 3
source
Base.replace!Function
replace!(A, old_new::Pair...; [count::Integer])

For each pair old=>new in old_new, replace all occurrences of old in collection A by new. Equality is determined using isequal. If count is specified, then replace at most count occurrences in total. See also replace.

Examples

julia> replace!([1, 2, 1, 3], 1=>0, 2=>4, count=2)
4-element Vector{Int64}:
 0
 4
 1
 3

julia> replace!(Set([1, 2, 3]), 1=>0)
Set{Int64} with 3 elements:
  0
  2
  3
source
replace!(new::Union{Function, Type}, A; [count::Integer])

Replace each element x in collection A by new(x). If count is specified, then replace at most count values in total (replacements being defined as new(x) !== x).

Examples

julia> replace!(x -> isodd(x) ? 2x : x, [1, 2, 3, 4])
4-element Vector{Int64}:
 2
 2
 6
 4

julia> replace!(Dict(1=>2, 3=>4)) do kv
           first(kv) < 3 ? first(kv)=>3 : kv
       end
Dict{Int64, Int64} with 2 entries:
  3 => 4
  1 => 3

julia> replace!(x->2x, Set([3, 6]))
Set{Int64} with 2 elements:
  6
  12
source
Base.restFunction
Base.rest(collection[, itr_state])

Generic function for taking the tail of collection, starting from a specific iteration state itr_state. Return a Tuple, if collection itself is a Tuple, a subtype of AbstractVector, if collection is an AbstractArray, a subtype of AbstractString if collection is an AbstractString, and an arbitrary iterator, falling back to Iterators.rest(collection[, itr_state]), otherwise.

Can be overloaded for user-defined collection types to customize the behavior of slurping in assignments in final position, like a, b... = collection.

Julia 1.6

Base.rest requires at least Julia 1.6.

See also: first, Iterators.rest, Base.split_rest.

Examples

julia> a = [1 2; 3 4]
2×2 Matrix{Int64}:
 1  2
 3  4

julia> first, state = iterate(a)
(1, 2)

julia> first, Base.rest(a, state)
(1, [3, 2, 4])
source
Base.split_restFunction
Base.split_rest(collection, n::Int[, itr_state]) -> (rest_but_n, last_n)

Generic function for splitting the tail of collection, starting from a specific iteration state itr_state. Returns a tuple of two new collections. The first one contains all elements of the tail but the n last ones, which make up the second collection.

The type of the first collection generally follows that of Base.rest, except that the fallback case is not lazy, but is collected eagerly into a vector.

Can be overloaded for user-defined collection types to customize the behavior of slurping in assignments in non-final position, like a, b..., c = collection.

Julia 1.9

Base.split_rest requires at least Julia 1.9.

See also: Base.rest.

Examples

julia> a = [1 2; 3 4]
2×2 Matrix{Int64}:
 1  2
 3  4

julia> first, state = iterate(a)
(1, 2)

julia> first, Base.split_rest(a, 1, state)
(1, ([3, 2], [4]))
source

可索引集合

Base.getindexFunction
getindex(collection, key...)

Retrieve the value(s) stored at the given key or index within a collection. The syntax a[i,j,...] is converted by the compiler to getindex(a, i, j, ...).

See also get, keys, eachindex.

Examples

julia> A = Dict("a" => 1, "b" => 2)
Dict{String, Int64} with 2 entries:
  "b" => 2
  "a" => 1

julia> getindex(A, "a")
1
source
Base.setindex!Function
setindex!(collection, value, key...)

Store the given value at the given key or index within a collection. The syntax a[i,j,...] = x is converted by the compiler to (setindex!(a, x, i, j, ...); x).

Examples

julia> a = Dict("a"=>1)
Dict{String, Int64} with 1 entry:
  "a" => 1

julia> setindex!(a, 2, "b")
Dict{String, Int64} with 2 entries:
  "b" => 2
  "a" => 1
source
Base.firstindexFunction
firstindex(collection) -> Integer
firstindex(collection, d) -> Integer

Return the first index of collection. If d is given, return the first index of collection along dimension d.

The syntaxes A[begin] and A[1, begin] lower to A[firstindex(A)] and A[1, firstindex(A, 2)], respectively.

See also: first, axes, lastindex, nextind.

Examples

julia> firstindex([1,2,4])
1

julia> firstindex(rand(3,4,5), 2)
1
source
Base.lastindexFunction
lastindex(collection) -> Integer
lastindex(collection, d) -> Integer

Return the last index of collection. If d is given, return the last index of collection along dimension d.

The syntaxes A[end] and A[end, end] lower to A[lastindex(A)] and A[lastindex(A, 1), lastindex(A, 2)], respectively.

See also: axes, firstindex, eachindex, prevind.

Examples

julia> lastindex([1,2,4])
3

julia> lastindex(rand(3,4,5), 2)
4
source

以下类型均完全实现了上述函数:

以下类型仅实现了部分上述函数:

字典

Dict 是一个标准字典。其实现利用了 hash 作为键的哈希函数和 isequal 来决定是否相等。对于自定义类型,可以定义这两个函数来重载它们在哈希表内的存储方式。

IdDict 是一种特殊的哈希表,在里面键始终是对象标识符。

WeakKeyDict 是一个哈希表的实现,里面键是对象的弱引用, 所以即使键在哈希表中被引用也有可能被垃圾回收。 它像 Dict 一样使用 hash 来做哈希和 isequal 来做相等判断, 但是它不会在插入时转换键,这点不像 Dict

Dicts 可以由传递含有 => 的成对对象给 Dict 的构造函数来被创建:Dict("A"=>1, "B"=>2)。 这个调用会尝试从键值对中推到类型信息(比如这个例子创造了一个 Dict{String, Int64})。 为了显式指定类型,请使用语法 Dict{KeyType,ValueType}(...)。例如:Dict{String,Int32}("A"=>1, "B"=>2)

字典也可以用生成器创建。例如:Dict(i => f(i) for i = 1:10)

对于字典 D,若键 x 的值存在,则语法 D[x] 返回 x 的值;否则抛出一个错误。 D[x] = y 存储键值对 x => yD 中,会覆盖键 x 的已有的值。 多个参数传入D[...] 会被转化成元组; 例如:语法 D[x,y] 等于 D[(x,y)],也就是说,它指向键为元组 (x,y) 的值。

Base.AbstractDictType
AbstractDict{K, V}

Supertype for dictionary-like types with keys of type K and values of type V. Dict, IdDict and other types are subtypes of this. An AbstractDict{K, V} should be an iterator of Pair{K, V}.

source
Base.DictType
Dict([itr])

Dict{K,V}() constructs a hash table with keys of type K and values of type V. Keys are compared with isequal and hashed with hash.

Given a single iterable argument, constructs a Dict whose key-value pairs are taken from 2-tuples (key,value) generated by the argument.

Examples

julia> Dict([("A", 1), ("B", 2)])
Dict{String, Int64} with 2 entries:
  "B" => 2
  "A" => 1

Alternatively, a sequence of pair arguments may be passed.

julia> Dict("A"=>1, "B"=>2)
Dict{String, Int64} with 2 entries:
  "B" => 2
  "A" => 1
source
Base.IdDictType
IdDict([itr])

IdDict{K,V}() constructs a hash table using objectid as hash and === as equality with keys of type K and values of type V.

See Dict for further help. In the example below, The Dict keys are all isequal and therefore get hashed the same, so they get overwritten. The IdDict hashes by object-id, and thus preserves the 3 different keys.

Examples

julia> Dict(true => "yes", 1 => "no", 1.0 => "maybe")
Dict{Real, String} with 1 entry:
  1.0 => "maybe"

julia> IdDict(true => "yes", 1 => "no", 1.0 => "maybe")
IdDict{Any, String} with 3 entries:
  true => "yes"
  1.0  => "maybe"
  1    => "no"
source
Base.WeakKeyDictType
WeakKeyDict([itr])

WeakKeyDict() constructs a hash table where the keys are weak references to objects which may be garbage collected even when referenced in a hash table.

See Dict for further help. Note, unlike Dict, WeakKeyDict does not convert keys on insertion, as this would imply the key object was unreferenced anywhere before insertion.

See also WeakRef.

source
Base.ImmutableDictType
ImmutableDict

ImmutableDict is a dictionary implemented as an immutable linked list, which is optimal for small dictionaries that are constructed over many individual insertions. Note that it is not possible to remove a value, although it can be partially overridden and hidden by inserting a new value with the same key.

ImmutableDict(KV::Pair)

Create a new entry in the ImmutableDict for a key => value pair

  • use (key => value) in dict to see if this particular combination is in the properties set
  • use get(dict, key, default) to retrieve the most recent value for a particular key
source
Base.haskeyFunction
haskey(collection, key) -> Bool

Determine whether a collection has a mapping for a given key.

Examples

julia> D = Dict('a'=>2, 'b'=>3)
Dict{Char, Int64} with 2 entries:
  'a' => 2
  'b' => 3

julia> haskey(D, 'a')
true

julia> haskey(D, 'c')
false
source
Base.getFunction
get(collection, key, default)

Return the value stored for the given key, or the given default value if no mapping for the key is present.

Julia 1.7

For tuples and numbers, this function requires at least Julia 1.7.

Examples

julia> d = Dict("a"=>1, "b"=>2);

julia> get(d, "a", 3)
1

julia> get(d, "c", 3)
3
source
get(f::Union{Function, Type}, collection, key)

Return the value stored for the given key, or if no mapping for the key is present, return f(). Use get! to also store the default value in the dictionary.

This is intended to be called using do block syntax

get(dict, key) do
    # default value calculated here
    time()
end
source
Base.get!Function
get!(collection, key, default)

Return the value stored for the given key, or if no mapping for the key is present, store key => default, and return default.

Examples

julia> d = Dict("a"=>1, "b"=>2, "c"=>3);

julia> get!(d, "a", 5)
1

julia> get!(d, "d", 4)
4

julia> d
Dict{String, Int64} with 4 entries:
  "c" => 3
  "b" => 2
  "a" => 1
  "d" => 4
source
get!(f::Union{Function, Type}, collection, key)

Return the value stored for the given key, or if no mapping for the key is present, store key => f(), and return f().

This is intended to be called using do block syntax.

Examples

julia> squares = Dict{Int, Int}();

julia> function get_square!(d, i)
           get!(d, i) do
               i^2
           end
       end
get_square! (generic function with 1 method)

julia> get_square!(squares, 2)
4

julia> squares
Dict{Int64, Int64} with 1 entry:
  2 => 4
source
Base.getkeyFunction
getkey(collection, key, default)

Return the key matching argument key if one exists in collection, otherwise return default.

Examples

julia> D = Dict('a'=>2, 'b'=>3)
Dict{Char, Int64} with 2 entries:
  'a' => 2
  'b' => 3

julia> getkey(D, 'a', 1)
'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)

julia> getkey(D, 'd', 'a')
'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)
source
Base.delete!Function
delete!(collection, key)

Delete the mapping for the given key in a collection, if any, and return the collection.

Examples

julia> d = Dict("a"=>1, "b"=>2)
Dict{String, Int64} with 2 entries:
  "b" => 2
  "a" => 1

julia> delete!(d, "b")
Dict{String, Int64} with 1 entry:
  "a" => 1

julia> delete!(d, "b") # d is left unchanged
Dict{String, Int64} with 1 entry:
  "a" => 1
source
Base.pop!Method
pop!(collection, key[, default])

Delete and return the mapping for key if it exists in collection, otherwise return default, or throw an error if default is not specified.

Examples

julia> d = Dict("a"=>1, "b"=>2, "c"=>3);

julia> pop!(d, "a")
1

julia> pop!(d, "d")
ERROR: KeyError: key "d" not found
Stacktrace:
[...]

julia> pop!(d, "e", 4)
4
source
Base.keysFunction
keys(iterator)

For an iterator or collection that has keys and values (e.g. arrays and dictionaries), return an iterator over the keys.

source
Base.valuesFunction
values(iterator)

For an iterator or collection that has keys and values, return an iterator over the values. This function simply returns its argument by default, since the elements of a general iterator are normally considered its "values".

Examples

julia> d = Dict("a"=>1, "b"=>2);

julia> values(d)
ValueIterator for a Dict{String, Int64} with 2 entries. Values:
  2
  1

julia> values([2])
1-element Vector{Int64}:
 2
source
values(a::AbstractDict)

Return an iterator over all values in a collection. collect(values(a)) returns an array of values. When the values are stored internally in a hash table, as is the case for Dict, the order in which they are returned may vary. But keys(a) and values(a) both iterate a and return the elements in the same order.

Examples

julia> D = Dict('a'=>2, 'b'=>3)
Dict{Char, Int64} with 2 entries:
  'a' => 2
  'b' => 3

julia> collect(values(D))
2-element Vector{Int64}:
 2
 3
source
Base.pairsFunction
pairs(IndexLinear(), A)
pairs(IndexCartesian(), A)
pairs(IndexStyle(A), A)

An iterator that accesses each element of the array A, returning i => x, where i is the index for the element and x = A[i]. Identical to pairs(A), except that the style of index can be selected. Also similar to enumerate(A), except i will be a valid index for A, while enumerate always counts from 1 regardless of the indices of A.

Specifying IndexLinear() ensures that i will be an integer; specifying IndexCartesian() ensures that i will be a Base.CartesianIndex; specifying IndexStyle(A) chooses whichever has been defined as the native indexing style for array A.

Mutation of the bounds of the underlying array will invalidate this iterator.

Examples

julia> A = ["a" "d"; "b" "e"; "c" "f"];

julia> for (index, value) in pairs(IndexStyle(A), A)
           println("$index $value")
       end
1 a
2 b
3 c
4 d
5 e
6 f

julia> S = view(A, 1:2, :);

julia> for (index, value) in pairs(IndexStyle(S), S)
           println("$index $value")
       end
CartesianIndex(1, 1) a
CartesianIndex(2, 1) b
CartesianIndex(1, 2) d
CartesianIndex(2, 2) e

See also IndexStyle, axes.

source
pairs(collection)

Return an iterator over key => value pairs for any collection that maps a set of keys to a set of values. This includes arrays, where the keys are the array indices.

Examples

julia> a = Dict(zip(["a", "b", "c"], [1, 2, 3]))
Dict{String, Int64} with 3 entries:
  "c" => 3
  "b" => 2
  "a" => 1

julia> pairs(a)
Dict{String, Int64} with 3 entries:
  "c" => 3
  "b" => 2
  "a" => 1

julia> foreach(println, pairs(["a", "b", "c"]))
1 => "a"
2 => "b"
3 => "c"

julia> (;a=1, b=2, c=3) |> pairs |> collect
3-element Vector{Pair{Symbol, Int64}}:
 :a => 1
 :b => 2
 :c => 3

julia> (;a=1, b=2, c=3) |> collect
3-element Vector{Int64}:
 1
 2
 3
source
Base.mergeFunction
merge(d::AbstractDict, others::AbstractDict...)

Construct a merged collection from the given collections. If necessary, the types of the resulting collection will be promoted to accommodate the types of the merged collections. If the same key is present in another collection, the value for that key will be the value it has in the last collection listed. See also mergewith for custom handling of values with the same key.

Examples

julia> a = Dict("foo" => 0.0, "bar" => 42.0)
Dict{String, Float64} with 2 entries:
  "bar" => 42.0
  "foo" => 0.0

julia> b = Dict("baz" => 17, "bar" => 4711)
Dict{String, Int64} with 2 entries:
  "bar" => 4711
  "baz" => 17

julia> merge(a, b)
Dict{String, Float64} with 3 entries:
  "bar" => 4711.0
  "baz" => 17.0
  "foo" => 0.0

julia> merge(b, a)
Dict{String, Float64} with 3 entries:
  "bar" => 42.0
  "baz" => 17.0
  "foo" => 0.0
source
merge(a::NamedTuple, bs::NamedTuple...)

Construct a new named tuple by merging two or more existing ones, in a left-associative manner. Merging proceeds left-to-right, between pairs of named tuples, and so the order of fields present in both the leftmost and rightmost named tuples take the same position as they are found in the leftmost named tuple. However, values are taken from matching fields in the rightmost named tuple that contains that field. Fields present in only the rightmost named tuple of a pair are appended at the end. A fallback is implemented for when only a single named tuple is supplied, with signature merge(a::NamedTuple).

Julia 1.1

Merging 3 or more NamedTuple requires at least Julia 1.1.

Examples

julia> merge((a=1, b=2, c=3), (b=4, d=5))
(a = 1, b = 4, c = 3, d = 5)
julia> merge((a=1, b=2), (b=3, c=(d=1,)), (c=(d=2,),))
(a = 1, b = 3, c = (d = 2,))
source
merge(a::NamedTuple, iterable)

Interpret an iterable of key-value pairs as a named tuple, and perform a merge.

julia> merge((a=1, b=2, c=3), [:b=>4, :d=>5])
(a = 1, b = 4, c = 3, d = 5)
source
Base.mergewithFunction
mergewith(combine, d::AbstractDict, others::AbstractDict...)
mergewith(combine)
merge(combine, d::AbstractDict, others::AbstractDict...)

Construct a merged collection from the given collections. If necessary, the types of the resulting collection will be promoted to accommodate the types of the merged collections. Values with the same key will be combined using the combiner function. The curried form mergewith(combine) returns the function (args...) -> mergewith(combine, args...).

Method merge(combine::Union{Function,Type}, args...) as an alias of mergewith(combine, args...) is still available for backward compatibility.

Julia 1.5

mergewith requires Julia 1.5 or later.

Examples

julia> a = Dict("foo" => 0.0, "bar" => 42.0)
Dict{String, Float64} with 2 entries:
  "bar" => 42.0
  "foo" => 0.0

julia> b = Dict("baz" => 17, "bar" => 4711)
Dict{String, Int64} with 2 entries:
  "bar" => 4711
  "baz" => 17

julia> mergewith(+, a, b)
Dict{String, Float64} with 3 entries:
  "bar" => 4753.0
  "baz" => 17.0
  "foo" => 0.0

julia> ans == mergewith(+)(a, b)
true
source
Base.merge!Function
merge!(d::AbstractDict, others::AbstractDict...)

Update collection with pairs from the other collections. See also merge.

Examples

julia> d1 = Dict(1 => 2, 3 => 4);

julia> d2 = Dict(1 => 4, 4 => 5);

julia> merge!(d1, d2);

julia> d1
Dict{Int64, Int64} with 3 entries:
  4 => 5
  3 => 4
  1 => 4
source
Base.mergewith!Function
mergewith!(combine, d::AbstractDict, others::AbstractDict...) -> d
mergewith!(combine)
merge!(combine, d::AbstractDict, others::AbstractDict...) -> d

Update collection with pairs from the other collections. Values with the same key will be combined using the combiner function. The curried form mergewith!(combine) returns the function (args...) -> mergewith!(combine, args...).

Method merge!(combine::Union{Function,Type}, args...) as an alias of mergewith!(combine, args...) is still available for backward compatibility.

Julia 1.5

mergewith! requires Julia 1.5 or later.

Examples

julia> d1 = Dict(1 => 2, 3 => 4);

julia> d2 = Dict(1 => 4, 4 => 5);

julia> mergewith!(+, d1, d2);

julia> d1
Dict{Int64, Int64} with 3 entries:
  4 => 5
  3 => 4
  1 => 6

julia> mergewith!(-, d1, d1);

julia> d1
Dict{Int64, Int64} with 3 entries:
  4 => 0
  3 => 0
  1 => 0

julia> foldl(mergewith!(+), [d1, d2]; init=Dict{Int64, Int64}())
Dict{Int64, Int64} with 3 entries:
  4 => 5
  3 => 0
  1 => 4
source
Base.sizehint!Function
sizehint!(s, n) -> s

Suggest that collection s reserve capacity for at least n elements. That is, if you expect that you're going to have to push a lot of values onto s, you can avoid the cost of incremental reallocation by doing it once up front; this can improve performance.

See also resize!.

Notes on the performance model

For types that support sizehint!,

  1. push! and append! methods generally may (but are not required to) preallocate extra storage. For types implemented in Base, they typically do, using a heuristic optimized for a general use case.

  2. sizehint! may control this preallocation. Again, it typically does this for types in Base.

  3. empty! is nearly costless (and O(1)) for types that support this kind of preallocation.

source
Base.keytypeFunction
keytype(T::Type{<:AbstractArray})
keytype(A::AbstractArray)

Return the key type of an array. This is equal to the eltype of the result of keys(...), and is provided mainly for compatibility with the dictionary interface.

Examples

julia> keytype([1, 2, 3]) == Int
true

julia> keytype([1 2; 3 4])
CartesianIndex{2}
Julia 1.2

For arrays, this function requires at least Julia 1.2.

source
keytype(type)

Get the key type of a dictionary type. Behaves similarly to eltype.

Examples

julia> keytype(Dict(Int32(1) => "foo"))
Int32
source
Base.valtypeFunction
valtype(T::Type{<:AbstractArray})
valtype(A::AbstractArray)

Return the value type of an array. This is identical to eltype and is provided mainly for compatibility with the dictionary interface.

Examples

julia> valtype(["one", "two", "three"])
String
Julia 1.2

For arrays, this function requires at least Julia 1.2.

source
valtype(type)

Get the value type of a dictionary type. Behaves similarly to eltype.

Examples

julia> valtype(Dict(Int32(1) => "foo"))
String
source

以下类型均完全实现了上述函数:

以下类型仅实现了部分上述函数:

类似 Set 的集合

Base.SetType
Set{T} <: AbstractSet{T}

Sets are mutable containers that provide fast membership testing.

Sets have efficient implementations of set operations such as in, union and intersect. Elements in a Set are unique, as determined by the elements' definition of isequal. The order of elements in a Set is an implementation detail and cannot be relied on.

See also: AbstractSet, BitSet, Dict, push!, empty!, union!, in, isequal

Examples

julia> s = Set("aaBca")
Set{Char} with 3 elements:
  'a'
  'c'
  'B'

julia> push!(s, 'b')
Set{Char} with 4 elements:
  'a'
  'b'
  'B'
  'c'

julia> s = Set([NaN, 0.0, 1.0, 2.0]);

julia> -0.0 in s # isequal(0.0, -0.0) is false
false

julia> NaN in s # isequal(NaN, NaN) is true
true
source
Base.BitSetType
BitSet([itr])

Construct a sorted set of Ints generated by the given iterable object, or an empty set. Implemented as a bit string, and therefore designed for dense integer sets. If the set will be sparse (for example, holding a few very large integers), use Set instead.

source
Base.unionFunction
union(s, itrs...)
∪(s, itrs...)

Construct an object containing all distinct elements from all of the arguments.

The first argument controls what kind of container is returned. If this is an array, it maintains the order in which elements first appear.

Unicode can be typed by writing \cup then pressing tab in the Julia REPL, and in many editors. This is an infix operator, allowing s ∪ itr.

See also unique, intersect, isdisjoint, vcat, Iterators.flatten.

Examples

julia> union([1, 2], [3])
3-element Vector{Int64}:
 1
 2
 3

julia> union([4 2 3 4 4], 1:3, 3.0)
4-element Vector{Float64}:
 4.0
 2.0
 3.0
 1.0

julia> (0, 0.0) ∪ (-0.0, NaN)
3-element Vector{Real}:
   0
  -0.0
 NaN

julia> union(Set([1, 2]), 2:3)
Set{Int64} with 3 elements:
  2
  3
  1
source
Base.union!Function
union!(s::Union{AbstractSet,AbstractVector}, itrs...)

Construct the union of passed in sets and overwrite s with the result. Maintain order with arrays.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other argument.

Examples

julia> a = Set([3, 4, 5]);

julia> union!(a, 1:2:7);

julia> a
Set{Int64} with 5 elements:
  5
  4
  7
  3
  1
source
Base.intersectFunction
intersect(s, itrs...)
∩(s, itrs...)

Construct the set containing those elements which appear in all of the arguments.

The first argument controls what kind of container is returned. If this is an array, it maintains the order in which elements first appear.

Unicode can be typed by writing \cap then pressing tab in the Julia REPL, and in many editors. This is an infix operator, allowing s ∩ itr.

See also setdiff, isdisjoint, issubset, issetequal.

Julia 1.8

As of Julia 1.8 intersect returns a result with the eltype of the type-promoted eltypes of the two inputs

Examples

julia> intersect([1, 2, 3], [3, 4, 5])
1-element Vector{Int64}:
 3

julia> intersect([1, 4, 4, 5, 6], [6, 4, 6, 7, 8])
2-element Vector{Int64}:
 4
 6

julia> intersect(1:16, 7:99)
7:16

julia> (0, 0.0) ∩ (-0.0, 0)
1-element Vector{Real}:
 0

julia> intersect(Set([1, 2]), BitSet([2, 3]), 1.0:10.0)
Set{Float64} with 1 element:
  2.0
source
Base.setdiffFunction
setdiff(s, itrs...)

Construct the set of elements in s but not in any of the iterables in itrs. Maintain order with arrays.

See also setdiff!, union and intersect.

Examples

julia> setdiff([1,2,3], [3,4,5])
2-element Vector{Int64}:
 1
 2
source
Base.setdiff!Function
setdiff!(s, itrs...)

Remove from set s (in-place) each element of each iterable from itrs. Maintain order with arrays.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other argument.

Examples

julia> a = Set([1, 3, 4, 5]);

julia> setdiff!(a, 1:2:6);

julia> a
Set{Int64} with 1 element:
  4
source
Base.symdiffFunction
symdiff(s, itrs...)

Construct the symmetric difference of elements in the passed in sets. When s is not an AbstractSet, the order is maintained.

See also symdiff!, setdiff, union and intersect.

Examples

julia> symdiff([1,2,3], [3,4,5], [4,5,6])
3-element Vector{Int64}:
 1
 2
 6

julia> symdiff([1,2,1], [2, 1, 2])
Int64[]
source
Base.symdiff!Function
symdiff!(s::Union{AbstractSet,AbstractVector}, itrs...)

Construct the symmetric difference of the passed in sets, and overwrite s with the result. When s is an array, the order is maintained. Note that in this case the multiplicity of elements matters.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other argument.

source
Base.intersect!Function
intersect!(s::Union{AbstractSet,AbstractVector}, itrs...)

Intersect all passed in sets and overwrite s with the result. Maintain order with arrays.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other argument.

source
Base.issubsetFunction
issubset(a, b) -> Bool
⊆(a, b) -> Bool
⊇(b, a) -> Bool

Determine whether every element of a is also in b, using in.

See also , , , , contains.

Examples

julia> issubset([1, 2], [1, 2, 3])
true

julia> [1, 2, 3] ⊆ [1, 2]
false

julia> [1, 2, 3] ⊇ [1, 2]
true
source
Base.:⊈Function
⊈(a, b) -> Bool
⊉(b, a) -> Bool

Negation of and , i.e. checks that a is not a subset of b.

See also issubset (), .

Examples

julia> (1, 2) ⊈ (2, 3)
true

julia> (1, 2) ⊈ (1, 2, 3)
false
source
Base.:⊊Function
⊊(a, b) -> Bool
⊋(b, a) -> Bool

Determines if a is a subset of, but not equal to, b.

See also issubset (), .

Examples

julia> (1, 2) ⊊ (1, 2, 3)
true

julia> (1, 2) ⊊ (1, 2)
false
source
Base.issetequalFunction
issetequal(a, b) -> Bool

Determine whether a and b have the same elements. Equivalent to a ⊆ b && b ⊆ a but more efficient when possible.

See also: isdisjoint, union.

Examples

julia> issetequal([1, 2], [1, 2, 3])
false

julia> issetequal([1, 2], [2, 1])
true
source
Base.isdisjointFunction
isdisjoint(a, b) -> Bool

Determine whether the collections a and b are disjoint. Equivalent to isempty(a ∩ b) but more efficient when possible.

See also: intersect, isempty, issetequal.

Julia 1.5

This function requires at least Julia 1.5.

Examples

julia> isdisjoint([1, 2], [2, 3, 4])
false

julia> isdisjoint([3, 1], [2, 4])
true
source

以下类型均完全实现了上述函数:

以下类型仅实现了部分上述函数:

双端队列

Base.push!Function
push!(collection, items...) -> collection

Insert one or more items in collection. If collection is an ordered container, the items are inserted at the end (in the given order).

Examples

julia> push!([1, 2, 3], 4, 5, 6)
6-element Vector{Int64}:
 1
 2
 3
 4
 5
 6

If collection is ordered, use append! to add all the elements of another collection to it. The result of the preceding example is equivalent to append!([1, 2, 3], [4, 5, 6]). For AbstractSet objects, union! can be used instead.

See sizehint! for notes about the performance model.

See also pushfirst!.

source
Base.pop!Function
pop!(collection) -> item

Remove an item in collection and return it. If collection is an ordered container, the last item is returned; for unordered containers, an arbitrary element is returned.

See also: popfirst!, popat!, delete!, deleteat!, splice!, and push!.

Examples

julia> A=[1, 2, 3]
3-element Vector{Int64}:
 1
 2
 3

julia> pop!(A)
3

julia> A
2-element Vector{Int64}:
 1
 2

julia> S = Set([1, 2])
Set{Int64} with 2 elements:
  2
  1

julia> pop!(S)
2

julia> S
Set{Int64} with 1 element:
  1

julia> pop!(Dict(1=>2))
1 => 2
source
pop!(collection, key[, default])

Delete and return the mapping for key if it exists in collection, otherwise return default, or throw an error if default is not specified.

Examples

julia> d = Dict("a"=>1, "b"=>2, "c"=>3);

julia> pop!(d, "a")
1

julia> pop!(d, "d")
ERROR: KeyError: key "d" not found
Stacktrace:
[...]

julia> pop!(d, "e", 4)
4
source
Base.popat!Function
popat!(a::Vector, i::Integer, [default])

Remove the item at the given i and return it. Subsequent items are shifted to fill the resulting gap. When i is not a valid index for a, return default, or throw an error if default is not specified.

See also: pop!, popfirst!, deleteat!, splice!.

Julia 1.5

This function is available as of Julia 1.5.

Examples

julia> a = [4, 3, 2, 1]; popat!(a, 2)
3

julia> a
3-element Vector{Int64}:
 4
 2
 1

julia> popat!(a, 4, missing)
missing

julia> popat!(a, 4)
ERROR: BoundsError: attempt to access 3-element Vector{Int64} at index [4]
[...]
source
Base.pushfirst!Function
pushfirst!(collection, items...) -> collection

Insert one or more items at the beginning of collection.

This function is called unshift in many other programming languages.

Examples

julia> pushfirst!([1, 2, 3, 4], 5, 6)
6-element Vector{Int64}:
 5
 6
 1
 2
 3
 4
source
Base.popfirst!Function
popfirst!(collection) -> item

Remove the first item from collection.

This function is called shift in many other programming languages.

See also: pop!, popat!, delete!.

Examples

julia> A = [1, 2, 3, 4, 5, 6]
6-element Vector{Int64}:
 1
 2
 3
 4
 5
 6

julia> popfirst!(A)
1

julia> A
5-element Vector{Int64}:
 2
 3
 4
 5
 6
source
Base.insert!Function
insert!(a::Vector, index::Integer, item)

Insert an item into a at the given index. index is the index of item in the resulting a.

See also: push!, replace, popat!, splice!.

Examples

julia> insert!(Any[1:6;], 3, "here")
7-element Vector{Any}:
 1
 2
  "here"
 3
 4
 5
 6
source
Base.deleteat!Function
deleteat!(a::Vector, i::Integer)

Remove the item at the given i and return the modified a. Subsequent items are shifted to fill the resulting gap.

See also: keepat!, delete!, popat!, splice!.

Examples

julia> deleteat!([6, 5, 4, 3, 2, 1], 2)
5-element Vector{Int64}:
 6
 4
 3
 2
 1
source
deleteat!(a::Vector, inds)

Remove the items at the indices given by inds, and return the modified a. Subsequent items are shifted to fill the resulting gap.

inds can be either an iterator or a collection of sorted and unique integer indices, or a boolean vector of the same length as a with true indicating entries to delete.

Examples

julia> deleteat!([6, 5, 4, 3, 2, 1], 1:2:5)
3-element Vector{Int64}:
 5
 3
 1

julia> deleteat!([6, 5, 4, 3, 2, 1], [true, false, true, false, true, false])
3-element Vector{Int64}:
 5
 3
 1

julia> deleteat!([6, 5, 4, 3, 2, 1], (2, 2))
ERROR: ArgumentError: indices must be unique and sorted
Stacktrace:
[...]
source
Base.keepat!Function
keepat!(a::Vector, inds)
keepat!(a::BitVector, inds)

Remove the items at all the indices which are not given by inds, and return the modified a. Items which are kept are shifted to fill the resulting gaps.

Warning

Behavior can be unexpected when any mutated argument shares memory with any other argument.

inds must be an iterator of sorted and unique integer indices. See also deleteat!.

Julia 1.7

This function is available as of Julia 1.7.

Examples

julia> keepat!([6, 5, 4, 3, 2, 1], 1:2:5)
3-element Vector{Int64}:
 6
 4
 2
source
keepat!(a::Vector, m::AbstractVector{Bool})
keepat!(a::BitVector, m::AbstractVector{Bool})

The in-place version of logical indexing a = a[m]. That is, keepat!(a, m) on vectors of equal length a and m will remove all elements from a for which m at the corresponding index is false.

Examples

julia> a = [:a, :b, :c];

julia> keepat!(a, [true, false, true])
2-element Vector{Symbol}:
 :a
 :c

julia> a
2-element Vector{Symbol}:
 :a
 :c
source
Base.splice!Function
splice!(a::Vector, index::Integer, [replacement]) -> item

Remove the item at the given index, and return the removed item. Subsequent items are shifted left to fill the resulting gap. If specified, replacement values from an ordered collection will be spliced in place of the removed item.

See also: replace, delete!, deleteat!, pop!, popat!.

Examples

julia> A = [6, 5, 4, 3, 2, 1]; splice!(A, 5)
2

julia> A
5-element Vector{Int64}:
 6
 5
 4
 3
 1

julia> splice!(A, 5, -1)
1

julia> A
5-element Vector{Int64}:
  6
  5
  4
  3
 -1

julia> splice!(A, 1, [-1, -2, -3])
6

julia> A
7-element Vector{Int64}:
 -1
 -2
 -3
  5
  4
  3
 -1

To insert replacement before an index n without removing any items, use splice!(collection, n:n-1, replacement).

source
splice!(a::Vector, indices, [replacement]) -> items

Remove items at specified indices, and return a collection containing the removed items. Subsequent items are shifted left to fill the resulting gaps. If specified, replacement values from an ordered collection will be spliced in place of the removed items; in this case, indices must be a AbstractUnitRange.

To insert replacement before an index n without removing any items, use splice!(collection, n:n-1, replacement).

Warning

Behavior can be unexpected when any mutated argument shares memory with any other argument.

Julia 1.5

Prior to Julia 1.5, indices must always be a UnitRange.

Julia 1.8

Prior to Julia 1.8, indices must be a UnitRange if splicing in replacement values.

Examples

julia> A = [-1, -2, -3, 5, 4, 3, -1]; splice!(A, 4:3, 2)
Int64[]

julia> A
8-element Vector{Int64}:
 -1
 -2
 -3
  2
  5
  4
  3
 -1
source
Base.resize!Function
resize!(a::Vector, n::Integer) -> Vector

Resize a to contain n elements. If n is smaller than the current collection length, the first n elements will be retained. If n is larger, the new elements are not guaranteed to be initialized.

Examples

julia> resize!([6, 5, 4, 3, 2, 1], 3)
3-element Vector{Int64}:
 6
 5
 4

julia> a = resize!([6, 5, 4, 3, 2, 1], 8);

julia> length(a)
8

julia> a[1:6]
6-element Vector{Int64}:
 6
 5
 4
 3
 2
 1
source
Base.append!Function
append!(collection, collections...) -> collection.

For an ordered container collection, add the elements of each collections to the end of it.

Julia 1.6

Specifying multiple collections to be appended requires at least Julia 1.6.

Examples

julia> append!([1], [2, 3])
3-element Vector{Int64}:
 1
 2
 3

julia> append!([1, 2, 3], [4, 5], [6])
6-element Vector{Int64}:
 1
 2
 3
 4
 5
 6

Use push! to add individual items to collection which are not already themselves in another collection. The result of the preceding example is equivalent to push!([1, 2, 3], 4, 5, 6).

See sizehint! for notes about the performance model.

See also vcat for vectors, union! for sets, and prepend! and pushfirst! for the opposite order.

source
Base.prepend!Function
prepend!(a::Vector, collections...) -> collection

Insert the elements of each collections to the beginning of a.

When collections specifies multiple collections, order is maintained: elements of collections[1] will appear leftmost in a, and so on.

Julia 1.6

Specifying multiple collections to be prepended requires at least Julia 1.6.

Examples

julia> prepend!([3], [1, 2])
3-element Vector{Int64}:
 1
 2
 3

julia> prepend!([6], [1, 2], [3, 4, 5])
6-element Vector{Int64}:
 1
 2
 3
 4
 5
 6
source

以下类型均完全实现了上述函数:

  • Vector (a.k.a. 1-dimensional Array)
  • BitVector (a.k.a. 1-dimensional BitArray)

集合相关的实用工具

Core.PairType
Pair(x, y)
x => y

Construct a Pair object with type Pair{typeof(x), typeof(y)}. The elements are stored in the fields first and second. They can also be accessed via iteration (but a Pair is treated as a single "scalar" for broadcasting operations).

See also Dict.

Examples

julia> p = "foo" => 7
"foo" => 7

julia> typeof(p)
Pair{String, Int64}

julia> p.first
"foo"

julia> for x in p
           println(x)
       end
foo
7

julia> replace.(["xops", "oxps"], "x" => "o")
2-element Vector{String}:
 "oops"
 "oops"
source
Base.PairsType
Iterators.Pairs(values, keys) <: AbstractDict{eltype(keys), eltype(values)}

Transforms an indexable container into a Dictionary-view of the same data. Modifying the key-space of the underlying data may invalidate this object.

source