缺失值

缺失值

Julia 支持表示统计意义上的缺失值,即某个变量在观察中没有可用值,但在理论上存在有效值的情况。缺失值由 missing 对象表示,该对象是 Missing 类型的唯一实例。missing 等价于 SQL 中的 NULL 以及 R 中的 NA,并在大多数情况下表现得与它们一样。

缺失值的传播

missing 值的行为遵循一个基本规则:missing 值在传给标准运算符和函数(尤其是数学函数)时会自动传播。其中一个操作数的值的不确定性会导致结果的不确定性。这实际上意味着涉及 missing 值的操作通常会返回 missing

julia> missing + 1
missing

julia> "a" * missing
missing

julia> abs(missing)
missing

由于 missing 是个普通的 Julia 对象,此传播规则仅适用于已选择实现此行为的函数。这可通过为 Missing 类型的参数定义特定的方法来实现,或者简单地通过接受此类型的参数,并将它们传给会传播它们的函数(如标准运算符)来实现。包在定义新函数时应考虑其传播缺失值是否有意义,如果是这种情况,则应适当地定义方法。将 missing 值传给一个函数,若该函数没有定义接受类型为 Missing 的参数的方法,则抛出一个 MethodError,就像任何其它类型。

相等和比较运算符

标准相等和比较运算符遵循上面给出的传播规则:如果任何操作数是 missing,那么结果是 missing。这是一些例子

julia> missing == 1
missing

julia> missing == missing
missing

julia> missing < 1
missing

julia> 2 >= missing
missing

特别要注意,missing == missing 返回 missing,所以 == 不能用于测试值是否为缺失值。要测试 x 是否为 missing,请用 ismissing(x)

特殊的比较运算符 isequal=== 是传播规则的例外:它们总返回一个 Bool 值,即使存在 missing 值,并认为 missingmissing 相等且其与任何其它值不同。因此,它们可用于测试某个值是否为 missing

julia> missing === 1
false

julia> isequal(missing, 1)
false

julia> missing === missing
true

julia> isequal(missing, missing)
true

isless 运算符是另一个例外:missing 被认为比任何其它值大。此运算符被用于 sort,因此 missing 值被放置在所有其它值之后。

julia> isless(1, missing)
true

julia> isless(missing, Inf)
false

julia> isless(missing, missing)
false

逻辑运算符

逻辑(或布尔)运算符 |&xor 是另一种特殊情况,因为它们只有在逻辑上是必需的时传递 missing 值。对于这些运算符来说,结果是否不确定取决于具体操作,其遵循三值逻辑的既定规则,这些规则也由 SQL 中的 NULL 以及 R 中的 NA 实现。这个抽象的定义实际上对应于一系列相对自然的行为,这最好通过具体的例子来解释。

让我们用逻辑「或」运算符 | 来说明这个原理。按照布尔逻辑的规则,如果其中一个操作数是 true,则另一个操作数对结果没影响,结果总是 true

julia> true | true
true

julia> true | false
true

julia> false | true
true

基于观察,我们可以得出结论,如果其中一个操作数是 true 而另一个是 missing,我们知道结果为 true,尽管另一个参数的实际值存在不确定性。如果我们能观察到第二个操作数的实际值,那么它只能是 truefalse,在两种情况下结果都是 true。因此,在这种特殊情况下,值的缺失不会传播

julia> true | missing
true

julia> missing | true
true

相反地,如果其中一个操作数是 false,结果可能是 truefalse,这取决于另一个操作数的值。因此,如果一个操作数是 missing,那么结果也是 missing

julia> false | true
true

julia> true | false
true

julia> false | false
false

julia> false | missing
missing

julia> missing | false
missing

逻辑「且」运算符 & 的行为与 | 运算符相似,区别在于当其中一个操作数为 false 时,值的缺失不会传播。例如,当第一个操作数是 false

julia> false & false
false

julia> false & true
false

julia> false & missing
false

另一方面,当其中一个操作数为 true 时,值的缺失会传播,例如,当第一个操作数是 true

julia> true & true
true

julia> true & false
false

julia> true & missing
missing

最后,逻辑「异或」运算符 xor 总传播 missing 值,因为两个操作数都总是对结果产生影响。还要注意,否定运算符 ! 在操作数是 missing 时返回 missing,这就像其它一元运算符。

流程控制和短路运算符

流程控制操作符,包括 ifwhile三元运算符 x ? y : z,不允许缺失值。这是因为如果我们能够观察实际值,它是 true 还是 false 是不确定的,这意味着我们不知道程序应该如何运行。一旦在以下上下文中遇到 missing 值,就会抛出 TypeError

julia> if missing
           println("here")
       end
ERROR: TypeError: non-boolean (Missing) used in boolean context

出于同样的原因,并与上面给出的逻辑运算符相反,短路布尔运算符 &&|| 在当前操作数的值决定下一个操作数是否求值时不允许 missing 值。例如

julia> missing || false
ERROR: TypeError: non-boolean (Missing) used in boolean context

julia> missing && false
ERROR: TypeError: non-boolean (Missing) used in boolean context

julia> true && missing && false
ERROR: TypeError: non-boolean (Missing) used in boolean context

另一方面,如果无需 missing 值即可确定结果,则不会引发错误。代码在对 missing 操作数求值前短路,以及 missing 是最后一个操作数都是这种情况。

julia> true && missing
missing

julia> false && missing
false

包含缺失值的数组

包含缺失值的数组的创建就像其它数组

julia> [1, missing]
2-element Array{Union{Missing, Int64},1}:
 1
  missing

如此示例所示,此类数组的元素类型为 Union{Missing, T},其中 T 为非缺失值的类型。这简单地反映了以下事实:数组条目可以具有类型 T(在这是 Int64)或类型 Missing。此类数组使用高效的内存存储,其等价于一个 Array{T} 组合一个 Array{UInt8},前者保存实际值,后者表示条目类型(即它是 Missing 还是 T)。

允许缺失值的数组可以使用标准语法构造。使用 Array{Union{Missing, T}}(missing, dims) 来创建填充缺失值的数组:

julia> Array{Union{Missing, String}}(missing, 2, 3)
2×3 Array{Union{Missing, String},2}:
 missing  missing  missing
 missing  missing  missing

允许但不包含 missing 值的数组可使用 convert 转换回不允许缺失值的数组。如果该数组包含 missing 值,在类型转换时会抛出 MethodError

julia> x = Union{Missing, String}["a", "b"]
2-element Array{Union{Missing, String},1}:
 "a"
 "b"

julia> convert(Array{String}, x)
2-element Array{String,1}:
 "a"
 "b"

julia> y = Union{Missing, String}[missing, "b"]
2-element Array{Union{Missing, String},1}:
 missing
 "b"

julia> convert(Array{String}, y)
ERROR: MethodError: Cannot `convert` an object of type Missing to an object of type String

跳过缺失值

由于 missing 会随着标准数学运算符传播,归约函数会在调用的数组包含缺失值时返回 missing

julia> sum([1, missing])
missing

在这种情况下,使用 skipmissing 即可跳过缺失值

julia> sum(skipmissing([1, missing]))
1

下面这个函数很方便,它返回一个迭代器,能高效地过滤掉 missing 值。因此,它可与任何支持迭代器的函数一起使用

julia> maximum(skipmissing([3, missing, 2, 1]))
3

julia> mean(skipmissing([3, missing, 2, 1]))
2.0

julia> mapreduce(sqrt, +, skipmissing([3, missing, 2, 1]))
4.146264369941973

我们可以使用 collect 来提取 non-missing 值,并将它们存入一个数组

julia> collect(skipmissing([3, missing, 2, 1]))
3-element Array{Int64,1}:
 3
 2
 1

数组上的逻辑运算

上面描述的逻辑运算符的三值逻辑也适用于针对数组的函数。因此,使用 == 运算符的数组相等性测试一旦其结果无法在不知道 missing 条目实际值的情况下确定,就返回 missing。在应用中,这意味着在待比较数组的所有非缺失值都相等,但某个或全部数组包含缺失值(也许在不同位置)时会返回 missing

julia> [1, missing] == [2, missing]
false

julia> [1, missing] == [1, missing]
missing

julia> [1, 2, missing] == [1, missing, 2]
missing

对于单个值,isequal 会将 missing 值视为与其它 missing 值相等但与非缺失值不同。

julia> isequal([1, missing], [1, missing])
true

julia> isequal([1, 2, missing], [1, missing, 2])
false

函数 anyall 遵循三值逻辑的规则,会在结果无法被确定时返回 missing

julia> all([true, missing])
missing

julia> all([false, missing])
false

julia> any([true, missing])
true

julia> any([false, missing])
missing